Trichloroethylene - Physiological Effects

Physiological Effects

When inhaled, trichloroethylene produces central nervous system depression resulting in general anesthesia. Its high blood solubility results in a less desirable slower induction of anesthesia. At low concentrations it is relatively non-irritating to the respiratory tract. Higher concentrations result in tachypnea. Many types of cardiac arrhythmias can occur and are exacerbated by epinephrine (adrenaline). It was noted in the 1940s that TCE reacted with carbon dioxide (CO2) absorbing systems (soda lime) to produce dichloroacetylene and phosgene. Cranial nerve dysfunction (especially the fifth cranial nerve) was common when TCE anesthesia was given using CO2 absorbing systems. These nerve deficits could last for months. Occasionally facial numbness was permanent. Muscle relaxation with TCE anesthesia sufficient for surgery was poor. For these reasons as well as problems with hepatotoxicity, TCE lost popularity in North America and Europe to more potent anesthestics such as halothane by the 1960s.

The symptoms of acute non-medical exposure are similar to those of alcohol intoxication, beginning with headache, dizziness, and confusion and progressing with increasing exposure to unconsciousness. Respiratory and circulatory depression can result in death.

Much of what is known about the human health effects of trichloroethylene is based on occupational exposures. Beyond the effects to the central nervous system, workplace exposure to trichloroethylene has been associated with toxic effects in the liver and kidney. Over time, occupational exposure limits on trichloroethylene have tightened, resulting in more stringent ventilation controls and personal protective equipment use by workers.

Research from Cancer bioassays performed by the National Cancer Institute (later the National Toxicology Program) showed that exposure to trichloroethylene is carcinogenic in animals, producing liver cancer in mice, and kidney cancer in rats. Research published in 1994 examined the incidence of leukemia and non-Hodgkin lymphoma in populations exposed to TCE in their drinking water.

The National Toxicology Program’s 11th Report on Carcinogens categorizes trichloroethylene as “reasonably anticipated to be a human carcinogen”, based on limited evidence of carcinogenicity from studies in humans and sufficient evidence of carcinogenicity from studies in experimental animals.

One recent review of the epidemiology of kidney cancer rated cigarette smoking and obesity as more important risk factors for kidney cancer than exposure to solvents such as trichloroethylene. In contrast, the most recent overall assessment of human health risks associated with trichloroethylene states, "here is concordance between animal and human studies, which supports the conclusion that trichloroethylene is a potential kidney carcinogen". The evidence appears to be less certain at this time regarding the relationship between humans and liver cancer observed in mice, with the NAS suggesting that low-level exposure might not represent a significant liver cancer risk in the general population.

Recent studies in laboratory animals and observations in human populations suggest that exposure to trichloroethylene might be associated with congenital heart defects While it is not clear what levels of exposure are associated with cardiac defects in humans, there is consistency between the cardiac defects observed in studies of communities exposed to trichloroethylene contamination in groundwater, and the effects observed in laboratory animals. A study published in August 2008, has demonstrated effects of TCE on human mitochondria. The article questions whether this might impact female reproductive function.

Occupational exposure to TCE was reported to correlate with development of symptoms of Parkinson's Disease in three laboratory workers. A retrospective twin study of pairs discordant for Parkinson's showed a six-fold increase in Parkinson's risk associated with TCE workplace exposure.

The health risks of trichloroethylene have been studied extensively. The U.S. Environmental Protection Agency (EPA) sponsored a "state of the science" review of the health effects associated with exposure to trichloroethylene. The National Academy of Sciences concluded that evidence on the carcinogenic risk and other potential health hazards from exposure to TCE has strengthened since EPA released their toxicological assessment of TCE, and encourages federal agencies to finalize the risk assessment for TCE using currently available information, so that risk management decisions for this chemical can be expedited.

In Europe, the Scientific Committee on Occupational Exposure Limit Values (SCOEL) recommends for trichloroethylene an occupational exposure limit (8h time-weighted average) of 10 ppm and a short-term exposure limit (15 min) of 30 ppm.

Read more about this topic:  Trichloroethylene

Famous quotes containing the word effects:

    The machines that are first invented to perform any particular movement are always the most complex, and succeeding artists generally discover that, with fewer wheels, with fewer principles of motion, than had originally been employed, the same effects may be more easily produced. The first systems, in the same manner, are always the most complex.
    Adam Smith (1723–1790)