Transport Phenomena - Momentum Transfer

Momentum Transfer

In momentum transfer, the fluid is treated as a continuous distribution of matter. The study of momentum transfer, or fluid mechanics can be divided into two branches: fluid statics (fluids at rest), and fluid dynamics (fluids in motion). When a fluid is flowing in the x direction parallel to a solid surface, the fluid has x-directed momentum, and its concentration is υxρ. By random diffusion of molecules there is an exchange of molecules in the z direction. Hence the x-directed momentum has been transferred in the z-direction from the faster- to the slower-moving layer. The equation for momentum transport is Newton's Law of Viscosity written as follows:

where τzx is the flux of x-directed momentum in the z direction, ν is μ/ρ, the momentum diffusivity z is the distance of transport or diffusion, ρ is the density, and μ is the viscosity. Newtons Law is the simplest relationship between the flux of momentum and the velocity gradient.

Read more about this topic:  Transport Phenomena

Famous quotes containing the word transfer:

    No sociologist ... should think himself too good, even in his old age, to make tens of thousands of quite trivial computations in his head and perhaps for months at a time. One cannot with impunity try to transfer this task entirely to mechanical assistants if one wishes to figure something, even though the final result is often small indeed.
    Max Weber (1864–1920)