Transmission Electron Microscopy - Modifications

Modifications

The capabilities of the TEM can be further extended by additional stages and detectors, sometimes incorporated on the same microscope. An electron cryomicroscope (CryoTEM) is a TEM with a specimen holder capable of maintaining the specimen at liquid nitrogen or liquid helium temperatures. This allows imaging specimens prepared in vitreous ice, the preferred preparation technique for imaging individual molecules or macromolecular assemblies.

A TEM can be modified into a scanning transmission electron microscope (STEM) by the addition of a system that rasters the beam across the sample to form the image, combined with suitable detectors. Scanning coils are used to deflect the beam, such as by an electrostatic shift of the beam, where the beam is then collected using a current detector such as a faraday cup, which acts as a direct electron counter. By correlating the electron count to the position of the scanning beam (known as the "probe"), the transmitted component of the beam may be measured. The non-transmitted components may be obtained either by beam tilting or by the use of annular dark field detectors.

In-situ experiments may also be conducted with experiments such as in-situ reactions or material deformation testing.

Modern research TEMs may include aberration correctors, to reduce the amount of distortion in the image. Incident beam Monochromators may also be used which reduce the energy spread of the incident electron beam to less than 0.15 eV. Major TEM makers include JEOL, Hitachi High-technologies, FEI Company (from merging with Philips Electron Optics), Carl Zeiss and NION.

Read more about this topic:  Transmission Electron Microscopy