Limitations of Transition State Theory
In general, TST has provided researchers with a conceptual foundation for understanding how chemical reactions take place. Even though the theory is widely applicable, it does have limitations. For example, when applied to each elementary step of a multi-step reaction, the theory assumes that each intermediate is long-lived enough to reach a Boltzmann distribution of energies before continuing to the next step. When the intermediates are very short-lived, however, then TST fails. In such cases, the momentum of the reaction trajectory from the reactants to the intermediate can carry forward to affect product selectivity (an example of such a reaction is the thermal decomposition of diazaobicyclopentanes, presented by Anslyn and Dougherty).
Transition state theory is also based on the assumption that atomic nuclei behave according to classic mechanics. It is assumed that unless atoms or molecules collide with enough energy to form the transition structure, then the reaction does not occur. However, according to quantum mechanics, for any barrier with a finite amount of energy, there is a possibility that particles can still tunnel across the barrier. With respect to chemical reactions this means that there is a chance that molecules will react even if they do not collide with enough energy to traverse the energy barrier. While this effect is expected to be negligible for reactions with large activation energies, it becomes a more important phenomenon for reactions with relatively low energy barriers, since the tunneling probability increases with decreasing barrier height.
Transition state theory fails for some reactions at high temperature. The theory assumes the reaction system will pass over the lowest energy saddle point on the potential energy surface. While this description is consistent for reactions occurring at relatively low temperatures, at high temperatures, molecules populate higher energy vibrational modes; their motion becomes more complex and collisions may lead to transition states far away from the lowest energy saddle point. This deviation from transition state theory is observed even in the simple exchange reaction between diatomic hydrogen and a hydrogen radical.
Given these limitations, several alternatives to transition state theory have been proposed. A brief discussion of these theories follows.
Read more about this topic: Transition State Theory
Famous quotes containing the words limitations of, limitations, transition, state and/or theory:
“The motion picture made in Hollywood, if it is to create art at all, must do so within such strangling limitations of subject and treatment that it is a blind wonder it ever achieves any distinction beyond the purely mechanical slickness of a glass and chromium bathroom.”
—Raymond Chandler (18881959)
“Growing up means letting go of the dearest megalomaniacal dreams of our childhood. Growing up means knowing they cant be fulfilled. Growing up means gaining the wisdom and skills to get what we want within the limitations imposed by realitya reality which consists of diminished powers, restricted freedoms and, with the people we love, imperfect connections.”
—Judith Viorst (20th century)
“The most remarkable aspect of the transition we are living through is not so much the passage from want to affluence as the passage from labor to leisure.... Leisure contains the future, it is the new horizon.... The prospect then is one of unremitting labor to bequeath to future generations a chance of founding a society of leisure that will overcome the demands and compulsions of productive labor so that time may be devoted to creative activities or simply to pleasure and happiness.”
—Henri Lefebvre (b. 1901)
“It should be noted that when he seizes a state the new ruler ought to determine all the injuries that he will need to inflict. He should inflict them once and for all, and not have to renew them every day.”
—Niccolò Machiavelli (14691527)
“Every theory is a self-fulfilling prophecy that orders experience into the framework it provides.”
—Ruth Hubbard (b. 1924)