Transiting Extrasolar Planets - Detection of Extrasolar Asteroids and Debris Disks - Circumstellar Disks

Circumstellar Disks

Disks of space dust (debris disks) surround many stars. The dust can be detected because it absorbs ordinary starlight and re-emits it as infrared radiation. Even if the dust particles have a total mass well less than that of Earth, they can still have a large enough total surface area that they outshine their parent star in infrared wavelengths.

The Hubble Space Telescope is capable of observing dust disks with its NICMOS (Near Infrared Camera and Multi-Object Spectrometer) instrument. Even better images have now been taken by its sister instrument, the Spitzer Space Telescope, and by the European Space Agency's Herschel Space Observatory, which can see far deeper into infrared wavelengths than the Hubble can. Dust disks have now been found around more than 15% of nearby sunlike stars.

The dust is believed to be generated by collisions among comets and asteroids. Radiation pressure from the star will push the dust particles away into interstellar space over a relatively short timescale. Therefore, the detection of dust indicates continual replenishment by new collisions, and provides strong indirect evidence of the presence of small bodies like comets and asteroids that orbit the parent star. For example, the dust disk around the star tau Ceti indicates that that star has a population of objects analogous to our own Solar System's Kuiper Belt, but at least ten times thicker.

More speculatively, features in dust disks sometimes suggest the presence of full-sized planets. Some disks have a central cavity, meaning that they are really ring-shaped. The central cavity may be caused by a planet "clearing out" the dust inside its orbit. Other disks contain clumps that may be caused by the gravitational influence of a planet. Both these kinds of features are present in the dust disk around epsilon Eridani, hinting at the presence of a planet with an orbital radius of around 40 AU (in addition to the inner planet detected through the radial-velocity method). These kinds of planet-disk interactions can be modeled numerically using collisional grooming techniques.

Read more about this topic:  Transiting Extrasolar Planets, Detection of Extrasolar Asteroids and Debris Disks