Trace Operator - Application

Application

Consider the problem of solving Poisson's equation with zero boundary conditions:

\begin{cases}
-\Delta u = f \text{ in } \Omega\\
u_{|\partial \Omega} = 0.
\end{cases}

Here, is a given continuous function on

With the help of the concept of trace, define the subspace to be all functions in the Sobolev space (this space is also denoted ) whose trace is zero. Then, the equation above can be given the weak formulation

Find in such that
for all in

Using the Lax–Milgram theorem one can then prove that this equation has precisely one solution, which implies that the original equation has precisely one weak solution.

One can employ similar ideas to prove the existence and uniqueness of more complicated partial differential equations and with other boundary conditions (such as Neumann and Robin), with the notion of trace playing an important role in all such problems.

Read more about this topic:  Trace Operator

Famous quotes containing the word application:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    The best political economy is the care and culture of men; for, in these crises, all are ruined except such as are proper individuals, capable of thought, and of new choice and the application of their talent to new labor.
    Ralph Waldo Emerson (1803–1882)

    I think that a young state, like a young virgin, should modestly stay at home, and wait the application of suitors for an alliance with her; and not run about offering her amity to all the world; and hazarding their refusal.... Our virgin is a jolly one; and tho at present not very rich, will in time be a great fortune, and where she has a favorable predisposition, it seems to me well worth cultivating.
    Benjamin Franklin (1706–1790)