Application
Consider the problem of solving Poisson's equation with zero boundary conditions:
Here, is a given continuous function on
With the help of the concept of trace, define the subspace to be all functions in the Sobolev space (this space is also denoted ) whose trace is zero. Then, the equation above can be given the weak formulation
- Find in such that
- for all in
Using the Lax–Milgram theorem one can then prove that this equation has precisely one solution, which implies that the original equation has precisely one weak solution.
One can employ similar ideas to prove the existence and uniqueness of more complicated partial differential equations and with other boundary conditions (such as Neumann and Robin), with the notion of trace playing an important role in all such problems.
Read more about this topic: Trace Operator
Famous quotes containing the word application:
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“The human mind is capable of excitement without the application of gross and violent stimulants; and he must have a very faint perception of its beauty and dignity who does not know this.”
—William Wordsworth (17701850)
“May my application so close
To so endless a repetition
Not make me tired and morose
And resentful of mans condition.”
—Robert Frost (18741963)