Trace
Let denote the free monoid, that is, the set of all strings written in the alphabet . Here, the asterisk denotes, as usual, the Kleene star. An independency relation then induces a binary relation on, where if and only if there exist, and a pair such that and . Here, and are understood to be strings (elements of ), while and are letters (elements of ).
The trace is defined as the symmetric, reflexive and transitive closure of . The trace is thus an equivalence relation on, and is denoted by . The subscript D on the equivalence simply denotes that the equivalence is obtained from the independency I induced by the dependency D. Clearly, different dependencies will give different equivalence relations.
The transitive closure simply implies that if and only if there exists a sequence of strings such that and and for all .
Read more about this topic: Trace Monoid
Famous quotes containing the word trace:
“No trace of slavery ought to mix with the studies of the freeborn man.... No study, pursued under compulsion, remains rooted in the memory.”
—Plato (c. 427347 B.C.)
“Of moral purpose I see no trace in Nature. That is an article of exclusively human manufactureand very much to our credit.”
—Thomas Henry Huxley (182595)
“No trace of slavery ought to mix with the studies of the freeborn man.... No study, pursued under compulsion, remains rooted in the memory.”
—Plato (c. 427347 B.C.)