Torque - Relationship Between Torque, Power, and Energy

Relationship Between Torque, Power, and Energy

If a force is allowed to act through a distance, it is doing mechanical work. Similarly, if torque is allowed to act through a rotational distance, it is doing work. Mathematically, for rotation about a fixed axis through the center of mass,

where W is work, τ is torque, and θ1 and θ2 represent (respectively) the initial and final angular positions of the body. It follows from the work-energy theorem that W also represents the change in the rotational kinetic energy Er of the body, given by

where I is the moment of inertia of the body and ω is its angular speed.

Power is the work per unit time, given by

where P is power, τ is torque, ω is the angular velocity, and · represents the scalar product.

Mathematically, the equation may be rearranged to compute torque for a given power output. Note that the power injected by the torque depends only on the instantaneous angular speed – not on whether the angular speed increases, decreases, or remains constant while the torque is being applied (this is equivalent to the linear case where the power injected by a force depends only on the instantaneous speed – not on the resulting acceleration, if any).

In practice, this relationship can be observed in power stations which are connected to a large electrical power grid. In such an arrangement, the generator's angular speed is fixed by the grid's frequency, and the power output of the plant is determined by the torque applied to the generator's axis of rotation.

Consistent units must be used. For metric SI units power is watts, torque is newton metres and angular speed is radians per second (not rpm and not revolutions per second).

Also, the unit newton metre is dimensionally equivalent to the joule, which is the unit of energy. However, in the case of torque, the unit is assigned to a vector, whereas for energy, it is assigned to a scalar.

Read more about this topic:  Torque

Famous quotes containing the words relationship between, relationship and/or energy:

    The proper aim of education is to promote significant learning. Significant learning entails development. Development means successively asking broader and deeper questions of the relationship between oneself and the world. This is as true for first graders as graduate students, for fledging artists as graying accountants.
    Laurent A. Daloz (20th century)

    It was a real treat when he’d read me Daisy Miller out loud. But we’d reached the point in our relationship when, in a straight choice between him and Henry James, I’d have taken Henry James any day even if Henry James were dead and not much of a one for the girls when living, either.
    Angela Carter (1940–1992)

    There are no accidents, only nature throwing her weight around. Even the bomb merely releases energy that nature has put there. Nuclear war would be just a spark in the grandeur of space. Nor can radiation “alter” nature: she will absorb it all. After the bomb, nature will pick up the cards we have spilled, shuffle them, and begin her game again.
    Camille Paglia (b. 1947)