Topological Vector Space

A topological vector space X is a vector space over a topological field K (most often the real or complex numbers with their standard topologies) which is endowed with a topology such that vector addition X × XX and scalar multiplication K × XX are continuous functions (where the domains of these functions are endowed with product topologies).

Some authors (e.g., Rudin) require the topology on X to be T0; it then follows that the space is Hausdorff, and even Tychonoff. The topological and linear algebraic structures can be tied together even more closely with additional assumptions, the most common of which are listed below.

The category of topological vector spaces over a given topological field K is commonly denoted TVSK or TVectK. The objects are the topological vector spaces over K and the morphisms are the continuous K-linear maps from one object to another.

Read more about Topological Vector Space:  Examples, Topological Structure, Local Notions, Types of Topological Vector Spaces, Dual Space

Famous quotes containing the word space:

    True spoiling is nothing to do with what a child owns or with amount of attention he gets. he can have the major part of your income, living space and attention and not be spoiled, or he can have very little and be spoiled. It is not what he gets that is at issue. It is how and why he gets it. Spoiling is to do with the family balance of power.
    Penelope Leach (20th century)