Topological Tensor Product

In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products (see Tensor product of Hilbert spaces), but for general Banach spaces or locally convex topological vector space the theory is notoriously subtle.

Read more about Topological Tensor Product:  Tensor Products of Hilbert Spaces, Cross Norms and Tensor Products of Banach Spaces, Tensor Products of Locally Convex Topological Vector Spaces, See Also

Famous quotes containing the word product:

    The UN is not just a product of do-gooders. It is harshly real. The day will come when men will see the UN and what it means clearly. Everything will be all right—you know when? When people, just people, stop thinking of the United Nations as a weird Picasso abstraction, and see it as a drawing they made themselves.
    Dag Hammarskjöld (1905–1961)