In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products (see Tensor product of Hilbert spaces), but for general Banach spaces or locally convex topological vector space the theory is notoriously subtle.
Read more about Topological Tensor Product: Tensor Products of Hilbert Spaces, Cross Norms and Tensor Products of Banach Spaces, Tensor Products of Locally Convex Topological Vector Spaces, See Also
Famous quotes containing the word product:
“Humour is the describing the ludicrous as it is in itself; wit is the exposing it, by comparing or contrasting it with something else. Humour is, as it were, the growth of nature and accident; wit is the product of art and fancy.”
—William Hazlitt (17781830)