Relation To Partial Orders
Topological orderings are also closely related to the concept of a linear extension of a partial order in mathematics.
A partially ordered set is just a set of objects together with a definition of the "≤" inequality relation, satisfying the axioms of reflexivity (x = x), antisymmetry (if x ≤ y and y ≤x then x = y) and transitivity (if x ≤ y and y ≤ z, then x ≤ z). A total order is a partial order in which, for every two objects x and y in the set, either x ≤ y or y ≤ x. Total orders are familiar in computer science as the comparison operators needed to perform comparison sorting algorithms. For finite sets, total orders may be identified with linear sequences of objects, where the "≤" relation is true whenever the first object precedes the second object in the order; a comparison sorting algorithm may be used to convert a total order into a sequence in this way. A linear extension of a partial order is a total order that is compatible with it, in the sense that, if x ≤ y in the partial order, then x ≤ y in the total order as well.
One can define a partial ordering from any DAG by letting the set of objects be the vertices of the DAG, and defining x ≤ y to be true, for any two vertices x and y, whenever there exists a directed path from x to y; that is, whenever y is reachable from x. With these definitions, a topological ordering of the DAG is the same thing as a linear extension of this partial order. Conversely, any partial ordering may be defined as the reachability relation in a DAG. One way of doing this is to define a DAG that has a vertex for every object in the partially ordered set, and an edge xy for every pair of objects for which x ≤ y. An alternative way of doing this is to use the transitive reduction of the partial ordering; in general, this produces DAGs with fewer edges, but the reachability relation in these DAGs is still the same partial order. By using these constructions, one can use topological ordering algorithms to find linear extensions of partial orders.
Read more about this topic: Topological Sorting
Famous quotes containing the words relation to, relation, partial and/or orders:
“There is the falsely mystical view of art that assumes a kind of supernatural inspiration, a possession by universal forces unrelated to questions of power and privilege or the artists relation to bread and blood. In this view, the channel of art can only become clogged and misdirected by the artists concern with merely temporary and local disturbances. The song is higher than the struggle.”
—Adrienne Rich (b. 1929)
“Only in a house where one has learnt to be lonely does one have this solicitude for things. Ones relation to them, the daily seeing or touching, begins to become love, and to lay one open to pain.”
—Elizabeth Bowen (18991973)
“There is no luck in literary reputation. They who make up the final verdict upon every book are not the partial and noisy readers of the hour when it appears; but a court as of angels, a public not to be bribed, not to be entreated, and not to be overawed, decides upon every mans title to fame. Only those books come down which deserve to last.”
—Ralph Waldo Emerson (18031882)
“Ive got orders to obey, thank God.”
—Robert Bolt (19241995)