Topological Sorting - Relation To Partial Orders

Relation To Partial Orders

Topological orderings are also closely related to the concept of a linear extension of a partial order in mathematics.

A partially ordered set is just a set of objects together with a definition of the "≤" inequality relation, satisfying the axioms of reflexivity (x = x), antisymmetry (if xy and yx then x = y) and transitivity (if xy and yz, then xz). A total order is a partial order in which, for every two objects x and y in the set, either xy or yx. Total orders are familiar in computer science as the comparison operators needed to perform comparison sorting algorithms. For finite sets, total orders may be identified with linear sequences of objects, where the "≤" relation is true whenever the first object precedes the second object in the order; a comparison sorting algorithm may be used to convert a total order into a sequence in this way. A linear extension of a partial order is a total order that is compatible with it, in the sense that, if xy in the partial order, then xy in the total order as well.

One can define a partial ordering from any DAG by letting the set of objects be the vertices of the DAG, and defining xy to be true, for any two vertices x and y, whenever there exists a directed path from x to y; that is, whenever y is reachable from x. With these definitions, a topological ordering of the DAG is the same thing as a linear extension of this partial order. Conversely, any partial ordering may be defined as the reachability relation in a DAG. One way of doing this is to define a DAG that has a vertex for every object in the partially ordered set, and an edge xy for every pair of objects for which xy. An alternative way of doing this is to use the transitive reduction of the partial ordering; in general, this produces DAGs with fewer edges, but the reachability relation in these DAGs is still the same partial order. By using these constructions, one can use topological ordering algorithms to find linear extensions of partial orders.

Read more about this topic:  Topological Sorting

Famous quotes containing the words relation to, relation, partial and/or orders:

    The foregoing generations beheld God and nature face to face; we, through their eyes. Why should not we also enjoy an original relation to the universe? Why should not we have a poetry and philosophy of insight and not of tradition, and a religion by revelation to us, and not the history of theirs?
    Ralph Waldo Emerson (1803–1882)

    The psychoanalysis of individual human beings, however, teaches us with quite special insistence that the god of each of them is formed in the likeness of his father, that his personal relation to God depends on his relation to his father in the flesh and oscillates and changes along with that relation, and that at bottom God is nothing other than an exalted father.
    Sigmund Freud (1856–1939)

    The only coöperation which is commonly possible is exceedingly partial and superficial; and what little true coöperation there is, is as if it were not, being a harmony inaudible to men. If a man has faith, he will coöperate with equal faith everywhere; if he has not faith, he will continue to live like the rest of the world, whatever company he is joined to.
    Henry David Thoreau (1817–1862)

    What is all wisdom save a collection of platitudes? Take fifty of our current proverbial sayings—they are so trite, so threadbare, that we can hardly bring our lips to utter them. None the less they embody the concentrated experience of the race and the man who orders his life according to their teaching cannot go far wrong.
    Norman Douglas (1868–1952)