Time-scale Calculus - Dynamic Equations

Dynamic Equations

Many results concerning differential equations carry over quite easily to corresponding results for difference equations, while other results seem to be completely different from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice — once for differential equations and once again for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale (also known as a time-set), which may be an arbitrary closed subset of the reals. In this way, results apply not only to the set of real numbers or set of integers but to more general time scales such as a Cantor set.

The three most popular examples of calculus on time scales are differential calculus, difference calculus, and quantum calculus. Dynamic equations on a time scale have a potential for applications, such as in population dynamics. For example, they can model insect populations that evolve continuously while in season, die out in winter while their eggs are incubating or dormant, and then hatch in a new season, giving rise to a non–overlapping population.

Read more about this topic:  Time-scale Calculus

Famous quotes containing the word dynamic:

    Imagination is always the fabric of social life and the dynamic of history. The influence of real needs and compulsions, of real interests and materials, is indirect because the crowd is never conscious of it.
    Simone Weil (1909–1943)