Time-domain Thermoreflectance - Application

Application

Through this process of TDTR, the thermal properties of many materials can be obtained. Common test setups include having multiple metal blocks connected together in a diffusion multiple, where once subjected to high temperatures various compounds can be created as a result of the diffusion of two adjacent metal blocks. An example would be a Ni-Cr-Pd-Pt-Rh-Ru diffusion multiple which would have diffusion zones of Ni-Cr, Ni-Pd, Ni-Pt and so on. In this way, many different materials can be tested at the same time. Lowest thermal conductivity for a thin film of solid, fully dense material (i.e. not porous) was also recently reported with measurements using this method.

Once this test sample is obtained, TDTR measurements can take place, with laser pulses of very short duration for both the pump and the probe lasers (<1 ps). The thermoreflected signal is then measured by a photodiode which is connected to a RF lock-in amplifier. The signals that come out of the amplifier consist of an in phase and out of phase component, and the ratio of these allow thermal conductivity data to be measured for a specific delay time.

The data received from this process can then be compared to a thermal model, and the thermal conductivity and thermal conductance can then be derived. It is found that these two parameters can be derived independently based on the delay times, with short delay times (0.1 - .5 ns) resulting in the thermal conductivity and longer delay times (> 2ns) resulting in the thermal conductance.

There is much room for error involved due to phase errors in the RF amplifier in addition to noise from the lasers. Typically, however, accuracy can be found to be within 8%.

Read more about this topic:  Time-domain Thermoreflectance

Famous quotes containing the word application:

    There are very few things impossible in themselves; and we do not want means to conquer difficulties so much as application and resolution in the use of means.
    François, Duc De La Rochefoucauld (1613–1680)

    The human mind is capable of excitement without the application of gross and violent stimulants; and he must have a very faint perception of its beauty and dignity who does not know this.
    William Wordsworth (1770–1850)

    I conceive that the leading characteristic of the nineteenth century has been the rapid growth of the scientific spirit, the consequent application of scientific methods of investigation to all the problems with which the human mind is occupied, and the correlative rejection of traditional beliefs which have proved their incompetence to bear such investigation.
    Thomas Henry Huxley (1825–95)