Three-dimensional Integrated Circuit - Design Styles

Design Styles

Depending on partitioning granularity, different design styles can be distinguished. Gate-level integration faces multiple challenges and currently appears less practical than block-level integration.

Gate-level integration
This style partitions standard cells between multiple dies. It promises wirelength reduction and great flexibility. However, wirelength reduction may be undermined unless modules of certain minimal size are preserved. On the other hand, its adverse effects include the massive number of necessary TSVs for interconnects. This design style requires 3D place-and-route tools, which are unavailable yet. Also, partitioning a design block across multiple dies implies that it cannot be fully tested before die stacking. After die stacking (post-bond testing), a single failed die can render several good dies unusable, undermining yield. This style also amplifies the impact of process variation, especially inter-die variation. In fact, a 3D layout may yield more poorly than the same circuit laid out in 2D, contrary to the original promise of 3D IC integration. Furthermore, this design style requires to redesign available Intellectual Property, since existing IP blocks and EDA tools do not provision for 3D integration.
Block-level integration
This style assigns entire design blocks to separate dies. Design blocks subsume most of the netlist connectivity and are linked by a small number of global interconnects. Therefore, block-level integration promises to reduce TSV overhead. Sophisticated 3D systems combining heterogeneous dies require distinct manufacturing processes at different technology nodes for fast and low-power random logic, several memory types, analog and RF circuits, etc. Block-level integration, which allows separate and optimized manufacturing processes, thus appears crucial for 3D integration. Furthermore, this style might facilitate the transition from current 2D design towards 3D IC design. Basically, 3D-aware tools are only needed for partitioning and thermal analysis. Separate dies will be designed using (adapted) 2D tools and 2D blocks. This is motivated by the broad availability of reliable IP blocks. It is more convenient to use available 2D IP blocks and to place the mandatory TSVs in the unoccupied space between blocks instead of redesigning IP blocks and embedding TSVs. Design-for-testability structures are a key component of IP blocks and can therefore be used to facilitate testing for 3D ICs. Also, critical paths can be mostly embedded within 2D blocks, which limits the impact of TSV and inter-die variation on manufacturing yield. Finally, modern chip design often requires last-minute engineering changes. Restricting the impact of such changes to single dies is essential to limit cost.

Read more about this topic:  Three-dimensional Integrated Circuit

Famous quotes containing the words design and/or styles:

    I always consider the settlement of America with reverence and wonder, as the opening of a grand scene and design in providence, for the illumination of the ignorant and the emancipation of the slavish part of mankind all over the earth.
    John Adams (1735–1826)

    There are only two styles of portrait painting; the serious and the smirk.
    Charles Dickens (1812–1870)