Thermowell - Flow Forces

Flow Forces

Thermowells are typically installed in piping systems and subject to both hydrostatic and aerodynamic forces. Vortex shedding is the dominant concern for thermowells in cross-flow applications and is capable of forcing the thermowell into resonance with the possibility of fatigue failure not only of the thermowell but also of the temperature sensor. The conditions for flow-induced resonance generally govern the design of the thermowell apart from its pressure rating and materials of construction. Flow-induced motion of the thermowell occurs both in-line with and transverse to the direction of flow with the fluid forces acting to bend the thermowell. In many applications the transverse component of the fluid forces resulting from vortex shedding tends to govern the onset of flow-induced resonance, with a forcing frequency equal to the vortex shedding rate. In liquids and in high pressure compressible fluids, a smaller but nonetheless significant component of motion in the flow-direction is also present and occurs at nearly twice the vortex shedding rate. The in-line resonance condition may govern thermowell design at high fluid velocities although its amplitude is a function of the mass-damping parameter or Scruton number describing the thermowell-fluid interaction.

For drilled bar-stock thermowells, the most common form of failure is bending fatigue at its base where the bending stresses are greatest. In extreme flow conditions (high velocity liquids or high velocity, high pressure gases and vapors) catastrophic failure may occur with bending stresses exceeding the ultimate strength of the material. For extremely long thermowells, the static component of the bending stresses may govern design. In less demanding services, fatigue failure is more gradual and often preceded by a series sensor failures. The latter are due to the acceleration of the thermowell tip as it vibrates, this motion causes the element to lift off the bottom of the thermowell and batter itself to pieces. In cases where the acceleration stresses have been measured, sensor accelerations at resonant conditions often exceed 250 Gs and have destroyed the accelerometer.

The natural frequencies of thermowell bending modes are dependent upon the dimensions of the thermowell, the compliance (or flexibility) of its support, and to a lesser extent dependent upon the mass of the sensor and the added mass of the fluid surrounding the thermowell.

The ASME Performance Test Code PTC 19.3TW-2010 ("19.3TW") defines criteria for the design and application of thermowells. However, these thermowells must be manufactured from bar stock or forged material where certain dimensional requirements and manufacturing tolerances are met. Coatings, sleeves, velocity collars, special machined surfaces such as spirals or fins are expressly outside the scope of the 19.3TW standard.

Read more about this topic:  Thermowell

Famous quotes containing the words flow and/or forces:

    I candidly confess that I have ever looked on Cuba as the most interesting addition which could ever be made to our system of States. The control which, with Florida, this island would give us over the Gulf of Mexico, and the countries and isthmus bordering on it, as well as all those whose waters flow into it, would fill up the measure of our political well-being.
    Thomas Jefferson (1743–1826)

    By speaking, by thinking, we undertake to clarify things, and that forces us to exacerbate them, dislocate them, schematize them. Every concept is in itself an exaggeration.
    José Ortega Y Gasset (1883–1955)