Thermal Copper Pillar Bump - Thin-film Thermoelectric Technology

Thin-film Thermoelectric Technology

Thin films are thin material layers ranging from fractions of a nanometer to several micrometers in thickness. Thin-film thermoelectric materials are grown by conventional semiconductor deposition methods and fabricated using conventional semiconductor micro-fabrication techniques.

Thin-film thermoelectrics have been demonstrated to provide high heat pumping capacity that far exceeds the capacities provided by traditional bulk pellet TE products. The benefit of thin-films versus bulk materials for thermoelectric manufacturing is expressed in Equation 1. Here the Qmax (maximum heat pumped by a module) is shown to be inversely proportional to the thickness of the film, L.

Eq. 1

As such, TE coolers manufactured with thin-films can easily have 10x – 20x higher Qmax values for a given active area A. This makes thin-film TECs ideally suited for applications involving high heat-flux flows. In addition to the increased heat pumping capability, the use of thin films allows for truly novel implementation of TE devices. Instead of a bulk module that is 1-3 mm in thickness, a thin-film TEC can be fabricated less than 100 um in thickness.

In its simplest form, the P or N leg of a TE couple (the basic building block of all thin-film TE devices) is a layer of thin-film TE material with a solder layer above and below, providing electrical and thermal functionality.

Read more about this topic:  Thermal Copper Pillar Bump

Famous quotes containing the word technology:

    If the technology cannot shoulder the entire burden of strategic change, it nevertheless can set into motion a series of dynamics that present an important challenge to imperative control and the industrial division of labor. The more blurred the distinction between what workers know and what managers know, the more fragile and pointless any traditional relationships of domination and subordination between them will become.
    Shoshana Zuboff (b. 1951)