Theoretical Motivation For General Relativity - Einstein Field Equation

Einstein Field Equation

We obtain the Einstein field equation by equating the acceleration required for circular orbits with the acceleration due to gravity

.

This is the relationship between curvature of spacetime and the stress-energy tensor.

The Ricci tensor becomes

.

The trace of the Ricci tensor is

.

Comparison of the Ricci tensor with the Ricci tensor calculated from the principle of least action, Theoretical motivation for general relativity#Principle of least action in general relativity identifying the stress-energy tensor with the Hilbert stress-energy, and remembering that A+B=1 removes the ambiguity in A, B, and C.

and

.

This gives

.

The field equation can be written

where

.

This is the Einstein field equation that describes curvature of spacetime that results from stress-energy density. This equation, along with the geodesic equation have motivated by the kinetics and dynamics of a particle orbiting the earth in a circular orbit. They are true in general.

Read more about this topic:  Theoretical Motivation For General Relativity

Famous quotes containing the words einstein, field and/or equation:

    When you are courting a nice girl an hour seems like a second. When you sit on a red-hot cinder a second seems like an hour. That’s relativity.
    —Albert Einstein (1879–1955)

    We need a type of theatre which not only releases the feelings, insights and impulses possible within the particular historical field of human relations in which the action takes place, but employs and encourages those thoughts and feelings which help transform the field itself.
    Bertolt Brecht (1898–1956)

    Jail sentences have many functions, but one is surely to send a message about what our society abhors and what it values. This week, the equation was twofold: female infidelity twice as bad as male abuse, the life of a woman half as valuable as that of a man. The killing of the woman taken in adultery has a long history and survives today in many cultures. One of those is our own.
    Anna Quindlen (b. 1952)