Test Theories of Special Relativity - Standard Model Extension

Standard Model Extension

Another, more extensive, model is the Standard Model Extension (SME) by Alan Kostelecký and others. Contrary to the Roberson-Mansouri-Sexl (RMS) framework, which is kinematic in nature and restricted to special relativity, SME not only accounts for special relativity, but for dynamical effects of the standard model and general relativity as well. It investigates possible spontaneous breaking of both Lorentz invariance and CPT symmetry. RMS is fully included in SME, though the latter has a much larger group of parameters that can indicate any Lorentz or CPT violation.

For instance, a couple of SME parameters was tested in a 2007 study sensitive to 10-16. It employed two simultaneous interferometers over a year's observation: Optical in Berlin at 52°31'N 13°20'E and microwave in Perth at 31°53'S 115°53E. A preferred background (leading to Lorentz Violation) could never be at rest relative to both of them. A large number of other tests has been carried out in recent years, such as the Hughes–Drever experiments. A list of derived and already measured SME-values was given by Kostelecký and Russell.

Read more about this topic:  Test Theories Of Special Relativity

Famous quotes containing the words standard, model and/or extension:

    As long as male behavior is taken to be the norm, there can be no serious questioning of male traits and behavior. A norm is by definition a standard for judging; it is not itself subject to judgment.
    Myriam Miedzian, U.S. author. Boys Will Be Boys, ch. 1 (1991)

    When you model yourself on people, you should try to resemble their good sides.
    Molière [Jean Baptiste Poquelin] (1622–1673)

    We know then the existence and nature of the finite, because we also are finite and have extension. We know the existence of the infinite and are ignorant of its nature, because it has extension like us, but not limits like us. But we know neither the existence nor the nature of God, because he has neither extension nor limits.
    Blaise Pascal (1623–1662)