Terraforming of Venus - Rotation

Rotation

Venus rotates once every 243 days – by far the slowest rotation period of any of the major planets. A Venerian sidereal day thus lasts more than a Venerian year (243 versus 224.7 Earth days). However, the length of a solar day on Venus is significantly shorter than the sidereal day; to an observer on the surface of Venus the time from one sunrise to the next would be 116.75 days. Nevertheless, Venus's extremely slow rotation rate would result in extremely long days and nights, which could prove difficult for most known Earth species of plants and animals to adapt to. The slow rotation also probably accounts for the lack of a significant magnetic field.

One proposal to compensate for the rotation rate is a system of orbiting solar mirrors which might be used to provide sunlight to the night side of Venus and possibly shade to the day side surface. In addition to his suggestion of slatted system of mirrors near the L1 point between Venus and the Sun, Paul Birch has proposed a rotating soletta mirror in a polar orbit, which would produce a 24-hour light cycle.

Increasing the speed of Venus's rotation would require energy many orders of magnitude greater than the construction of orbiting solar mirrors, or even than the removal of Venus's atmosphere. Recent scientific research suggests that close fly-bys of asteroids or cometary bodies larger than 60 miles across could be used to move a planet in its orbit, or increase the speed of rotation. G. David Nordley has suggested, in fiction, that Venus might be spun-up to a day-length of 30 Earth-days by exporting the atmosphere of Venus into space via mass drivers. A proposal by Birch involves the use of dynamic compression members to transfer energy and momentum via high velocity mass-streams to a band around the equator of Venus. He calculated that this would give Venus a day of 24 hours in 30 years.

Read more about this topic:  Terraforming Of Venus

Famous quotes containing the word rotation:

    The lazy manage to keep up with the earth’s rotation just as well as the industrious.
    Mason Cooley (b. 1927)