Terahertz Time-domain Spectroscopy - Detection

Detection

The electrical field of the terahertz pulses is measured in a detector that is simultaneously illuminated with an ultrashort laser pulse. Two common detection schemes are used in THz-TDS: photoconductive sampling and electro-optical sampling. THz pulses can also be detected by bolometers, heat detectors cooled to liquid-helium temperatures. Since bolometers can only measure the total energy of a terahertz pulse, rather than its electrical field over time, it is not suitable for use in THz-TDS.

In both THz-TDS detection methods, a part (called the detection pulse) of the same ultrashort laser pulse that was used to generate the terahertz pulse is fed to the detector, where it arrives simultaneously with the terahertz pulse. The detector will produce a different electrical signal depending on whether the detection pulse arrives when the electric field of the THz pulse is low or high. An optical delay line is used to vary the timing of the detection pulse.

Because the measurement technique is coherent, it naturally rejects incoherent radiation. Additionally, because the time slice of the measurement is extremely narrow, the noise contribution to the measurement is extremely low.

The signal-to-noise ratio (S/N) of the resulting time-domain waveform obviously depends on experimental conditions (e.g., averaging time), however due to the coherent sampling techniques described, high S/N values (>70 dB) are routinely seen with 1 minute averaging times.

Read more about this topic:  Terahertz Time-domain Spectroscopy