Relationship To Flat Modules
In general, is a bifunctor which accepts a right and a left R module pair as input, and assigns them to the tensor product in the category of abelian groups.
By fixing a right R module M, a functor arises, and symmetrically a left R module N could be fixed to create a functor . Unlike the Hom bifunctor, the tensor functor is covariant in both inputs.
It can be shown that M⊗- and -⊗N are always right exact functors, but not necessarily left exact. By definition, a module T is a flat module if T⊗- is an exact functor.
If {mi}i∈I and {nj}j∈J are generating sets for M and N, respectively, then {mi⊗nj}i∈I,j∈J will be a generating set for M⊗N. Because the tensor functor M⊗R- sometimes fails to be left exact, this may not be a minimal generating set, even if the original generating sets are minimal.
When the tensor products are taken over a field F so that -⊗- is exact in both positions, and the generating sets are bases of M and N, it is true that indeed forms a basis for M⊗F N.
Read more about this topic: Tensor Product Of Modules
Famous quotes containing the words relationship to, relationship and/or flat:
“Women, because of their colonial relationship to men, have to fight for their own independence. This fight for our own independence will lead to the growth and development of the revolutionary movement in this country. Only the independent woman can be truly effective in the larger revolutionary struggle.”
—Womens Liberation Workshop, Students for a Democratic Society, Radical political/social activist organization. Liberation of Women, in New Left Notes (July 10, 1967)
“We must introduce a new balance in the relationship between the individual and the governmenta balance that favors greater individual freedom and self-reliance.”
—Gerald R. Ford (b. 1913)
“A man can go from being a lover to being a stranger in three moves flat ... but a woman under the guise of friendship will engage in acts of duplicity which come to light very much later. There are different species of self-justification.”
—Anita Brookner (b. 1938)