Construction
The construction of M ⊗ N takes a quotient of a free abelian group with basis the symbols m ⊗ n for m in M and n in N by the subgroup generated by all elements of the form
- −(m+m′) ⊗ n + m ⊗ n + m′ ⊗ n
- −m ⊗ (n+n′) + m ⊗ n + m ⊗ n′
- (m·r) ⊗ n − m ⊗ (r·n)
where m,m′ in M, n,n′ in N, and r in R. The function which takes (m,n) to the coset containing m ⊗ n is bilinear, and the subgroup has been chosen minimally so that this map is bilinear.
The direct product of M and N is rarely isomorphic to the tensor product of M and N. When R is not commutative, then the tensor product requires that M and N be modules on opposite sides, while the direct product requires they be modules on the same side. In all cases the only function from M × N to Z which is both linear and bilinear is the zero map.
Read more about this topic: Tensor Product Of Modules
Famous quotes containing the word construction:
“Theres no art
To find the minds construction in the face.”
—William Shakespeare (15641616)
“No construction stiff working overtime takes more stress and straining than we did just to stay high.”
—Gus Van Sant, U.S. screenwriter and director, and Dan Yost. Bob Hughes (Matt Dillon)
“Theres no art
To find the minds construction in the face:
He was a gentleman on whom I built
An absolute trust.”
—William Shakespeare (15641616)