Tensor (intrinsic Definition) - Universal Property

Universal Property

The space can be characterized by a universal property in terms of multilinear mappings. Amongst the advantages of this approach are that it gives a way to show that many linear mappings are "natural" or "geometric" (in other words are independent of any choice of basis). Explicit computational information can then be written down using bases, and this order of priorities can be more convenient than proving a formula gives rise to a natural mapping. Another aspect is that tensor products are not used only for free modules, and the "universal" approach carries over more easily to more general situations.

A scalar-valued function on a Cartesian product (or direct sum) of vector spaces

is multilinear if it is linear in each argument. The space of all multlinear mappings from the product V1×V2×...×VN into W is denoted LN(V1,V2,...,VN; W). When N = 1, a multilinear mapping is just an ordinary linear mapping, and the space of all linear mappings from V to W is denoted L(V;W).

The universal characterization of the tensor product implies that, for each multilinear function

there exists a unique linear function

such that

for all viV and αiV∗.

Using the universal property, it follows that the space of (m,n)-tensors admits a natural isomorphism

T^m_n(V) \cong
L(V^*\otimes \dots \otimes V^*\otimes V \otimes \dots \otimes V; \mathbb{R})
\cong L^{m+n}(V^*,\dots,V^*,V,\dots,V;\mathbb{R}).

In the formula above, the roles of V and V* are reversed. In particular, one has

and

and

Read more about this topic:  Tensor (intrinsic Definition)

Famous quotes containing the words universal and/or property:

    It is long ere we discover how rich we are. Our history, we are sure, is quite tame: we have nothing to write, nothing to infer. But our wiser years still run back to the despised recollections of childhood, and always we are fishing up some wonderful article out of that pond; until, by and by, we begin to suspect that the biography of the one foolish person we know is, in reality, nothing less than the miniature paraphrase of the hundred volumes of the Universal History.
    Ralph Waldo Emerson (1803–1882)

    Let’s call something a rigid designator if in every possible world it designates the same object, a non-rigid or accidental designator if that is not the case. Of course we don’t require that the objects exist in all possible worlds.... When we think of a property as essential to an object we usually mean that it is true of that object in any case where it would have existed. A rigid designator of a necessary existent can be called strongly rigid.
    Saul Kripke (b. 1940)