Temperature-responsive Polymer - Phase Diagrams of Thermoresponsive Polymers

Phase Diagrams of Thermoresponsive Polymers

The phase separation temperature (and hence, the cloud point) is dependent on polymer concentration. Therefore, temperature-composition diagrams are used to display thermoresponsive behavior over a wide range of concentrations. Phases separate into a polymer-poor and a polymer-rich phase. In strictly binary mixtures the composition of the coexisting phases can be determined by drawing tie-lines. However, since polymers display a molar mass distribution this straightforward approach may be insufficient. During the process of phase separation the polymer-rich phase can vitrify before equilibrium is reached. This depends on the glass transition temperature for each individual composition. It is convenient to add the glass transition curve to the phase diagram, although it is no real equilibrium. The intersection of the glass transition curve with the cloud point curve is called Berghmans point. In the case of UCST polymers, above the Berghmans point the phases separate into two liquid phases, below this point into a liquid polymer-poor phase and a vitrified polymer-rich phase. For LCST polymers the inverse behavior is observed.

Read more about this topic:  Temperature-responsive Polymer

Famous quotes containing the words phase and/or diagrams:

    The Indians feel that each stage is crucial and that the child should be allowed to dwell in each for the appropriate period of time so that every aspect of his being can evolve, just as a plant evolves in the proper time and sequence of the seasons. Otherwise, the child never has a chance to master himself in any one phase of his life.
    Alan Quetone (20th century)

    Professors could silence me then; they had figures, diagrams, maps, books.... I was learning that books and diagrams can be evil things if they deaden the mind of man and make him blind or cynical before subjection of any kind.
    Agnes Smedley (1890–1950)