Technicolor (physics) - Introduction

Introduction

The mechanism for the breaking of electroweak gauge symmetry in the Standard Model of elementary particle interactions remains unknown. The breaking must be spontaneous, meaning that the underlying theory manifests the symmetry exactly (the gauge-boson fields are massless in the equations of motion), but the solutions (the ground state and the excited states) do not. In particular, the physical W and Z gauge bosons become massive. This phenomenon, in which the W and Z bosons also acquire an extra polarization state, is called the "Higgs mechanism". Despite the precise agreement of the electroweak theory with experiment at energies accessible so far, the necessary ingredients for the symmetry breaking remain hidden, yet to be revealed at higher energies.

The simplest mechanism of electroweak symmetry breaking introduces a single complex field and predicts the existence of the Higgs boson. Typically, the Higgs boson is "unnatural" in the sense that quantum mechanical fluctuations produce corrections to its mass that lift it to such high values that it cannot play the role for which it was introduced. Unless the Standard Model breaks down at energies less than a few TeV, the Higgs mass can be kept small only by a delicate fine-tuning of parameters.

Technicolor avoids this problem by hypothesizing a new gauge interaction coupled to new massless fermions. This interaction is asymptotically free at very high energies and becomes strong and confining as the energy decreases to the electroweak scale of roughly 250 GeV. These strong forces spontaneously break the massless fermions' chiral symmetries, some of which are weakly gauged as part of the Standard Model. This is the dynamical version of the Higgs mechanism. The electroweak gauge symmetry is thus broken, producing masses for the W and Z bosons.

The new strong interaction leads to a host of new composite, short-lived particles at energies accessible at the Large Hadron Collider (LHC). This framework is natural because there are no elementary Higgs bosons and, hence, no fine-tuning of parameters. Quark and lepton masses also break the electroweak gauge symmetries, so they, too, must arise spontaneously. A mechanism for incorporating this feature is known as extended technicolor. Technicolor and extended technicolor face a number of phenomenological challenges, in particular issues of flavor-changing neutral currents, precision electroweak tests, and the top quark mass. Technicolor models also do not generically predict Higgs-like bosons as light as 125 GeV/c2; such a particle was discovered by experiments at the Large Hadron Collider in 2012. Some of these issues can be addressed within a class of theories known as walking technicolor.

Read more about this topic:  Technicolor (physics)

Famous quotes containing the word introduction:

    Do you suppose I could buy back my introduction to you?
    S.J. Perelman, U.S. screenwriter, Arthur Sheekman, Will Johnstone, and Norman Z. McLeod. Groucho Marx, Monkey Business, a wisecrack made to his fellow stowaway Chico Marx (1931)

    For better or worse, stepparenting is self-conscious parenting. You’re damned if you do, and damned if you don’t.
    —Anonymous Parent. Making It as a Stepparent, by Claire Berman, introduction (1980, repr. 1986)

    Such is oftenest the young man’s introduction to the forest, and the most original part of himself. He goes thither at first as a hunter and fisher, until at last, if he has the seeds of a better life in him, he distinguishes his proper objects, as a poet or naturalist it may be, and leaves the gun and fish-pole behind. The mass of men are still and always young in this respect.
    Henry David Thoreau (1817–1862)