Systems Biology - History

History

Systems biology finds its roots in:

  • the quantitative modeling of enzyme kinetics, a discipline that flourished between 1900 and 1970,
  • the mathematical modeling of population growth,
  • the simulations developed to study neurophysiology, and
  • control theory and cybernetics.

One of the theorists who can be seen as one of the precursors of systems biology is Ludwig von Bertalanffy with his general systems theory. One of the first numerical simulations in cell biology was published in 1952 by the British neurophysiologists and Nobel prize winners Alan Lloyd Hodgkin and Andrew Fielding Huxley, who constructed a mathematical model that explained the action potential propagating along the axon of a neuronal cell. Their model described a cellular function emerging from the interaction between two different molecular components, a potassium and a sodium channel, and can therefore be seen as the beginning of computational systems biology. In 1960, Denis Noble developed the first computer model of the heart pacemaker.

The formal study of systems biology, as a distinct discipline, was launched by systems theorist Mihajlo Mesarovic in 1966 with an international symposium at the Case Institute of Technology in Cleveland, Ohio entitled "Systems Theory and Biology".

The 1960s and 1970s saw the development of several approaches to study complex molecular systems, such as the Metabolic Control Analysis and the biochemical systems theory. The successes of molecular biology throughout the 1980s, coupled with a skepticism toward theoretical biology, that then promised more than it achieved, caused the quantitative modelling of biological processes to become a somewhat minor field.

However the birth of functional genomics in the 1990s meant that large quantities of high quality data became available, while the computing power exploded, making more realistic models possible. In 1997, the group of Masaru Tomita published the first quantitative model of the metabolism of a whole (hypothetical) cell.

Around the year 2000, after Institutes of Systems Biology were established in Seattle and Tokyo, systems biology emerged as a movement in its own right, spurred on by the completion of various genome projects, the large increase in data from the omics (e.g. genomics and proteomics) and the accompanying advances in high-throughput experiments and bioinformatics. Since then, various research institutes dedicated to systems biology have been developed. For example, the NIGMS of NIH established a project grant that is currently supporting over ten Systems Biology Centers in the United States. As of summer 2006, due to a shortage of people in systems biology several doctoral training programs in systems biology have been established in many parts of the world. In that same year, the National Science Foundation (NSF) put forward a grand challenge for systems biology in the 21st century to build a mathematical model of the whole cell.

Read more about this topic:  Systems Biology

Famous quotes containing the word history:

    A great proportion of the inhabitants of the Cape are always thus abroad about their teaming on some ocean highway or other, and the history of one of their ordinary trips would cast the Argonautic expedition into the shade.
    Henry David Thoreau (1817–1862)

    To summarize the contentions of this paper then. Firstly, the phrase ‘the meaning of a word’ is a spurious phrase. Secondly and consequently, a re-examination is needed of phrases like the two which I discuss, ‘being a part of the meaning of’ and ‘having the same meaning.’ On these matters, dogmatists require prodding: although history indeed suggests that it may sometimes be better to let sleeping dogmatists lie.
    —J.L. (John Langshaw)

    The only history is a mere question of one’s struggle inside oneself. But that is the joy of it. One need neither discover Americas nor conquer nations, and yet one has as great a work as Columbus or Alexander, to do.
    —D.H. (David Herbert)