Synthetic Diamond

Synthetic diamond (also known as laboratory-created diamond, laboratory-grown diamond, cultured diamond or cultivated diamond) is diamond produced in an artificial process, as opposed to natural diamonds, which are created by geological processes. Synthetic diamond is also widely known as HPHT diamond or CVD diamond after the two common production methods (referring to the high-pressure high-temperature and chemical vapor deposition crystal formation methods, respectively).

Although often referred to as synthetic, this term has been considered somewhat problematic. In the U.S., the Federal Trade Commission has indicated that the alternative terms laboratory-grown, laboratory-created, and -created "would more clearly communicate the nature of the stone", as consumers associate the term synthetic with imitation products – whereas man-made diamonds are actual diamond material.

Numerous claims of diamond synthesis were documented between 1879 and 1928; most of those attempts were carefully analyzed but none were confirmed. In the 1940s, systematic research began in the United States, Sweden and the Soviet Union to grow diamonds using CVD and HPHT processes. The first reproducible synthesis was reported around 1953. Those two processes still dominate the production of synthetic diamond. A third method, known as detonation synthesis, entered the diamond market in the late 1990s. In this process, nanometer-sized diamond grains are created in a detonation of carbon-containing explosives. A fourth method, treating graphite with high-power ultrasound, has been demonstrated in the laboratory, but currently has no commercial application.

The properties of synthetic diamond depend on the details of the manufacturing processes; however, some synthetic diamonds (whether formed by HPHT or CVD) have properties such as hardness, thermal conductivity and electron mobility that are superior to those of most naturally-formed diamonds.

Synthetic diamond is widely used in abrasives, in cutting and polishing tools and in heat sinks. Electronic applications of synthetic diamond are being developed, including high-power switches at power stations, high-frequency field-effect transistors and light-emitting diodes. Synthetic diamond detectors of ultraviolet (UV) light or high-energy particles are used at high-energy research facilities and are available commercially. Because of its unique combination of thermal and chemical stability, low thermal expansion and high optical transparency in a wide spectral range, synthetic diamond is becoming the most popular material for optical windows in high-power CO2 lasers and gyrotrons.

Both CVD and HPHT diamonds can be cut into gems and various colors can be produced: clear white, yellow, brown, blue, green and orange. The appearance of synthetic gems on the market created major concerns in the diamond trading business, as a result of which special spectroscopic devices and techniques have been developed to distinguish synthetic and natural diamonds.

Read more about Synthetic Diamond:  History, Manufacturing Technologies, Properties

Famous quotes containing the words synthetic and/or diamond:

    In every philosophical school, three thinkers succeed one another in the following way: the first produces out of himself the sap and seed, the second draws it out into threads and spins a synthetic web, and the third waits in this web for the sacrificial victims that are caught in it—and tries to live off philosophy.
    Friedrich Nietzsche (1844–1900)

    I met Jack Kennedy in November, 1946.... We went out on a double date and it turned out to be a fair evening for me. I seduced a girl who would have been bored by a diamond as big as the Ritz.
    Norman Mailer (b. 1923)