Synchronous Code Division Multiple Access - Code Division Multiplexing (Synchronous CDMA)

Code Division Multiplexing (Synchronous CDMA)

Synchronous CDMA exploits mathematical properties of orthogonality between vectors representing the data strings. For example, binary string 1011 is represented by the vector (1, 0, 1, 1). Vectors can be multiplied by taking their dot product, by summing the products of their respective components (for example, if u = (a, b) and v = (c, d), then their dot product u·v = ac + bd). If the dot product is zero, the two vectors are said to be orthogonal to each other. Some properties of the dot product aid understanding of how W-CDMA works. If vectors a and b are orthogonal, then and:

\begin{align}
\mathbf{a}\cdot(\mathbf{a}+\mathbf{b}) &= \|\mathbf{a}\|^2 &\quad\mathrm{since}\quad \mathbf{a}\cdot\mathbf{a}+\mathbf{a}\cdot\mathbf{b} &= \|a\|^2+0 \\
\mathbf{a}\cdot(-\mathbf{a}+\mathbf{b}) &= -\|\mathbf{a}\|^2 &\quad\mathrm{since}\quad -\mathbf{a}\cdot\mathbf{a}+\mathbf{a}\cdot\mathbf{b} &= -\|a\|^2+0 \\
\mathbf{b}\cdot(\mathbf{a}+\mathbf{b}) &= \|\mathbf{b}\|^2 &\quad\mathrm{since}\quad \mathbf{b}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b} &= 0+\|b\|^2 \\
\mathbf{b}\cdot(\mathbf{a}-\mathbf{b}) &= -\|\mathbf{b}\|^2 &\quad\mathrm{since}\quad \mathbf{b}\cdot\mathbf{a}-\mathbf{b}\cdot\mathbf{b} &= 0-\|b\|^2
\end{align}

Each user in synchronous CDMA uses a code orthogonal to the others' codes to modulate their signal. An example of four mutually orthogonal digital signals is shown in the figure. Orthogonal codes have a cross-correlation equal to zero; in other words, they do not interfere with each other. In the case of IS-95 64 bit Walsh codes are used to encode the signal to separate different users. Since each of the 64 Walsh codes are orthogonal to one another, the signals are channelized into 64 orthogonal signals. The following example demonstrates how each user's signal can be encoded and decoded.

Read more about this topic:  Synchronous Code Division Multiple Access

Famous quotes containing the words code and/or division:

    Acknowledge your will and speak to us all, “This alone is what I will to be!” Hang your own penal code up above you: we want to be its enforcers!
    Friedrich Nietzsche (1844–1900)

    Slow, slow, fresh fount, keep time with my salt tears;
    Yet slower yet, oh faintly gentle springs:
    List to the heavy part the music bears,
    “Woe weeps out her division when she sings.”
    Droop herbs and flowers;
    Fall grief in showers;
    “Our beauties are not ours”:
    Oh, I could still,
    Like melting snow upon some craggy hill,
    Drop, drop, drop, drop,
    Since nature’s pride is, now, a withered daffodil.
    Ben Jonson (1572–1637)