Standard Symplectic Space
Further information: Symplectic matrix#Symplectic transformationsThe standard symplectic space is R2n with the symplectic form given by a nonsingular, skew-symmetric matrix. Typically ω is chosen to be the block matrix
where In is the n × n identity matrix. In terms of basis vectors (x1, ..., xn, y1, ..., yn):
A modified version of the Gram-Schmidt process shows that any finite-dimensional symplectic vector space has a basis such that ω takes this form, often called a Darboux basis.
There is another way to interpret this standard symplectic form. Since the model space Rn used above carries much canonical structure which might easily lead to misinterpretation, we will use "anonymous" vector spaces instead. Let V be a real vector space of dimension n and V∗ its dual space. Now consider the direct sum W := V ⊕ V∗ of these spaces equipped with the following form:
Now choose any basis (v1, ..., vn) of V and consider its dual basis
We can interpret the basis vectors as lying in W if we write xi = (vi, 0) and yi = (0, vi∗). Taken together, these form a complete basis of W,
The form ω defined here can be shown to have the same properties as in the beginning of this section; in other words, every symplectic structure is isomorphic to one of the form V ⊕ V∗. The subspace V is not unique, and a choice of subspace V is called a polarization. The subspaces that give such an isomorphism are called Lagrangian subspaces or simply Lagrangians.
Explicitly, given a Lagrangian subspace (as defined below), then a choice of basis (x1, ..., xn) defines a dual basis for a complement, by
Read more about this topic: Symplectic Vector Space
Famous quotes containing the words standard and/or space:
“The art of advertisement, after the American manner, has introduced into all our life such a lavish use of superlatives, that no standard of value whatever is intact.”
—Wyndham Lewis (18821957)
“Even the most subjected person has moments of rage and resentment so intense that they respond, they act against. There is an inner uprising that leads to rebellion, however short- lived. It may be only momentary but it takes place. That space within oneself where resistance is possible remains.”
—bell hooks (b. c. 1955)