Symplectic Manifold - Linear Symplectic Manifold

Linear Symplectic Manifold

There is a standard linear model, namely a symplectic vector space R2n. Let R2n have the basis {v1, ... ,v2n}. Then we define our symplectic form ω so that for all 1 ≤ in we have ω(vi,vn+i) = 1, ω(vn+i,vi) = −1, and ω is zero for all other pairs of basis vectors. In this case the symplectic form reduces to a simple quadratic form. If In denotes the n × n identity matrix then the matrix, Ω, of this quadratic form is given by the (2n × 2n) block matrix:

Read more about this topic:  Symplectic Manifold

Famous quotes containing the word manifold:

    Thy love is such I can no way repay,
    The heavens reward thee manifold I pray.
    Then while we live, in love lets so persever,
    That when we live no more, we may live ever.
    Anne Bradstreet (c. 1612–1672)