General Definition
Let G be a connected Lie group. Then a symmetric space for G is a homogeneous space G/H where the stabilizer H of a typical point is an open subgroup of the fixed point set of an involution σ of G. Thus σ is an automorphism of G with σ2 = idG and H is an open subgroup of the set
Because H is open, it is a union of components of Gσ (including, of course, the identity component).
As an automorphism of G, σ fixes the identity element, and hence, by differentiating at the identity, it induces an automorphism of the Lie algebra of G, also denoted by σ, whose square is the identity. It follows that the eigenvalues of σ are ±1. The +1 eigenspace is the Lie algebra of H (since this is the Lie algebra of Gσ), and the -1 eigenspace will be denoted . Since σ is an automorphism of, this gives a direct sum decomposition
with
The first condition is automatic for any homogeneous space: it just says the infinitesimal stabilizer is a Lie subalgebra of . The second condition means that is an -invariant complement to in . Thus any symmetric space is a reductive homogeneous space, but there are many reductive homogeneous spaces which are not symmetric spaces. The key feature of symmetric spaces is the third condition that brackets into .
Conversely, given any Lie algebra with a direct sum decomposition satisfying these three conditions, the linear map σ, equal to the identity on and minus the identity on, is an involutive automorphism.
Read more about this topic: Symmetric Space
Famous quotes containing the words general and/or definition:
“We have grown literally afraid to be poor. We despise anyone who elects to be poor in order to simplify and save his inner life. If he does not join the general scramble and pant with the money-making street, we deem him spiritless and lacking in ambition.”
—William James (18421910)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)