Sustainable Biofuel - Plants Used As Sustainable Biofuel - Sugarcane in Brazil

Sugarcane in Brazil

See also: Environmental and social impacts of Brazilian ethanol fuel

Brazil’s production of ethanol fuel from sugarcane dates back to the 1970s, as a governmental response to the 1973 oil crisis. Brazil is considered the biofuel industry leader and the world's first sustainable biofuels economy. In 2010 the U.S. Environmental Protection Agency designated Brazilian sugarcane ethanol as an advanced biofuel due to EPA's estimated 61% reduction of total life cycle greenhouse gas emissions, including direct indirect land use change emissions.

Brazil sugarcane ethanol fuel program success and sustainability is based on the most efficient agricultural technology for sugarcane cultivation in the world, uses modern equipment and cheap sugar cane as feedstock, the residual cane-waste (bagasse) is used to process heat and power, which results in a very competitive price and also in a high energy balance (output energy/input energy), which varies from 8.3 for average conditions to 10.2 for best practice production.

A report commissioned by the United Nations, based on a detailed review of published research up to mid-2009 as well as the input of independent experts world-wide, found that ethanol from sugar cane as produced in Brazil "in some circumstances does better than just “zero emission”. If grown and processed correctly, it has negative emission, pulling CO2 out of the atmosphere, rather than adding it. In contrast, the report found that U.S. use of maize for biofuel is less efficient, as sugarcane can lead to emissions reductions of between 70% and well over 100% when substituted for gasoline. Several other studies have shown that sugarcane based ethanol reduces greenhouse gases by 86 to 90% if there is no significant land use change.

In another study commissioned by the Dutch government in 2006 to evaluate the sustainability of Brazilian bioethanol concluded that there is sufficient water to supply all foreseeable long-term water requirements for sugarcane and ethanol production. This evaluation also found that consumption of agrochemicals for sugar cane production is lower than in citric, corn, coffee and soybean cropping. The study found that development of resistant sugar cane varieties is a crucial aspect of disease and pest control and is one of the primary objectives of Brazil’s cane genetic improvement programs. Disease control is one of the main reasons for the replacement of a commercial variety of sugar cane.

Another concern is the fact that sugarcane fields are traditionally burned just before harvest to avoid harm to the workers, by removing the sharp leaves and killing snakes and other harmful animals, and also to fertilize the fields with ash. Mechanization will reduce pollution from burning fields and has higher productivity than people, and due to mechanization the number of temporary workers in the sugarcane plantations has already declined. By the 2008 harvest season, around 47% of the cane was collected with harvesting machines.

Regarding the negative impacts of the potential direct and indirect effect of land use changes on carbon emissions, the study commissioned by the Dutch government concluded that "it is very difficult to determine the indirect effects of further land use for sugar cane production (i.e. sugar cane replacing another crop like soy or citrus crops, which in turn causes additional soy plantations replacing pastures, which in turn may cause deforestation), and also not logical to attribute all these soil carbon losses to sugar cane". The Brazilian agency Embrapa estimates that there is enough agricultural land available to increase at least 30 times the existing sugarcane plantation without endangering sensible ecosystems or taking land destined for food crops. Most future growth is expected to take place on abandoned pasture lands, as it has been the historical trend in São Paulo state. Also, productivity is expected to improve even further based on current biotechnology research, genetic improvement, and better agronomic practices, thus contributing to reduce land demand for future sugarcane cultures.

Another concern is the risk of clearing rain forests and other environmentally valuable land for sugarcane production, such as the Amazonia, the Pantanal or the Cerrado. Embrapa has rebutted this concern explaining that 99.7% of sugarcane plantations are located at least 2,000 km from the Amazonia, and expansion during the last 25 years took place in the Center-South region, also far away from the Amazonia, the Pantanal or the Atlantic forest. In São Paulo state growth took place in abandoned pasture lands. The impact assessment commissioned by the Dutch government supported this argument.

In order to guarantee a sustainable development of ethanol production, in September 2009 the government issued by decree a countrywide agroecological land use zoning to restrict sugarcane growth in or near environmentally sensitive areas. According to the new criteria, 92.5% of the Brazilian territory is not suitable for sugarcane plantation. The government considers that the suitable areas are more than enough to meet the future demand for ethanol and sugar in the domestic and international markets foreseen for the next decades.

Regarding the food vs fuel issue, a World Bank research report published on July 2008 found that "Brazil's sugar-based ethanol did not push food prices appreciably higher". This research paper also concluded that Brazil's sugar cane based ethanol has not raised sugar prices significantly. An economic assessment report also published in July 2008 by the OECD agrees with the World Bank report regarding the negative effects of subsidies and trade restrictions, but found that the impact of biofuels on food prices are much smaller. A study by the Brazilian research unit of the Fundação Getúlio Vargas regarding the effects of biofuels on grain prices concluded that the major driver behind the 2007-2008 rise in food prices was speculative activity on futures markets under conditions of increased demand in a market with low grain stocks. The study also concluded that there is no correlation between Brazilian sugarcane cultivated area and average grain prices, as on the contrary, the spread of sugarcane was accompanied by rapid growth of grain crops in the country.

Read more about this topic:  Sustainable Biofuel, Plants Used As Sustainable Biofuel