Surjective Function

A surjective function is a function whose image is equal to its codomain. Equivalently, a function f with domain X and codomain Y is surjective if for every y in Y there exists at least one x in X with . Surjections are sometimes denoted by a two-headed rightwards arrow, as in f : XY.

Symbolically,

Let, then is said to be surjective if

Read more about Surjective Function:  Examples, Properties

Famous quotes containing the word function:

    Our father has an even more important function than modeling manhood for us. He is also the authority to let us relax the requirements of the masculine model: if our father accepts us, then that declares us masculine enough to join the company of men. We, in effect, have our diploma in masculinity and can go on to develop other skills.
    Frank Pittman (20th century)