Surface Runoff - Measurement and Mathematical Modeling

Measurement and Mathematical Modeling

Runoff is analyzed by using mathematical models in combination with various water quality sampling methods. Measurements can be made using continuous automated water quality analysis instruments targeted on pollutants such as specific organic or inorganic chemicals, pH, turbidity etc. or targeted on secondary indicators such as dissolved oxygen. Measurements can also be made in batch form by extracting a single water sample and conducting any number of chemical or physical tests on that sample.

In the 1950s or earlier hydrology transport models appeared to calculate quantities of runoff, primarily for flood forecasting. Beginning in the early 1970s computer models were developed to analyze the transport of runoff carrying water pollutants, which considered dissolution rates of various chemicals, infiltration into soils and ultimate pollutant load delivered to receiving waters. One of the earliest models addressing chemical dissolution in runoff and resulting transport was developed in the early 1970s under contract to the United States Environmental Protection Agency (EPA). This computer model formed the basis of much of the mitigation study that led to strategies for land use and chemical handling controls.

Other computer models have been developed (such as the DSSAM Model) that allow surface runoff to be tracked through a river course as reactive water pollutants. In this case the surface runoff may be considered to be a line source of water pollution to the receiving waters.

Read more about this topic:  Surface Runoff

Famous quotes containing the words measurement, mathematical and/or modeling:

    That’s the great danger of sectarian opinions, they always accept the formulas of past events as useful for the measurement of future events and they never are, if you have high standards of accuracy.
    John Dos Passos (1896–1970)

    What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.
    Boris Pasternak (1890–1960)

    The computer takes up where psychoanalysis left off. It takes the ideas of a decentered self and makes it more concrete by modeling mind as a multiprocessing machine.
    Sherry Turkle (b. 1948)