Superhard Materials - Nanostructured Superhard Materials

Nanostructured Superhard Materials

Nanosuperhard materials fall into the extrinsic category of superhard materials. Because molecular defects affect the superhard properties of bulk materials it is obvious that the microstructure of superhard materials give the materials their unique properties. Focus on synthesizing nano superhard materials is around minimizing microcracks occurring within the structure through grain boundary hardening. The elimination of microcracks can strengthen the material by 3 to 7 times its original strength. Grain boundary strengthening is described by the Hall-Petch equation

σc = σ0 + kgb/√d

Here σc is the critical fracture stress, d the crystallite size and σ0 and kgb are constants.

If a material is brittle its strength depends mainly on the resistance to forming microcracks. The critical stress which causes the growth of a microcrack of size a0 is given by a general formula

σc = kcrack√(2Eγs/πa0) ∝ 1/√d

Here E is the Young's modulus, kcrack is a constant dependent on the nature and shape of the microcrack and the stress applied and γs the surface cohesive energy.

The average hardness of a material decreases with d (crystallite size) decreasing below 10 nm. There have been many mechanisms proposed for grain boundary sliding and hence material softening, but the details are still not understood. Besides grain boundary strengthening, much attention has been put into building microheterostructures, or nanostructures of two materials with very large differences in elastic moduli. Heterostructures were first proposed in 1970 and contained such highly ordered thin layers that they could not theoretically be separated by mechanical means. These highly ordered heterostructures were believed to be stronger than simple mixtures. This theory was confirmed with Al/Cu and Al/Ag structures. After the formation of Al/Cu and Al/Ag, the research was extended to multilayer systems including Cu/Ni, TiN/VN, W/WN, Hf/HfN and more. In all cases, decreasing the lattice period increased the hardness. One common form of a nanostructured material is aggregated diamond nanorods, which is harder than bulk diamond and is currently the hardest (~150 GPa) material known.

Read more about this topic:  Superhard Materials

Famous quotes containing the word materials:

    What is most interesting and valuable in it, however, is not the materials for the history of Pontiac, or Braddock, or the Northwest, which it furnishes; not the annals of the country, but the natural facts, or perennials, which are ever without date. When out of history the truth shall be extracted, it will have shed its dates like withered leaves.
    Henry David Thoreau (1817–1862)