Supercritical Fluid - Phase Diagram

Phase Diagram

Figures 1 and 2 show projections of a phase diagram. In the pressure-temperature phase diagram (Fig. 1) the boiling separates the gas and liquid region and ends in the critical point, where the liquid and gas phases disappear to become a single supercritical phase. This can be observed in the density-pressure phase diagram for carbon dioxide, as shown in Figure 2. At well below the critical temperature, e.g., 280K, as the pressure increases, the gas compresses and eventually (at just over 40 bar) condenses into a much denser liquid, resulting in the discontinuity in the line (vertical dotted line). The system consists of 2 phases in equilibrium, a dense liquid and a low density gas. As the critical temperature is approached (300K), the density of the gas at equilibrium becomes denser, and that of the liquid lower. At the critical point, (304.1 K and 7.38 MPa (73.8 bar)). there is no difference in density, and the 2 phases become one fluid phase. Thus, above the critical temperature a gas cannot be liquefied by pressure. At slightly above the critical temperature (310K), in the vicinity of the critical pressure, the line is almost vertical. A small increase in pressure causes a large increase in the density of the supercritical phase. Many other physical properties also show large gradients with pressure near the critical point, e.g. viscosity, the relative permittivity and the solvent strength, which are all closely related to the density. At higher temperatures, the fluid starts to behave like a gas, as can be seen in Figure 2. For carbon dioxide at 400 K, the density increases almost linearly with pressure.

Many pressurised gases are actually supercritical fluids. For example, nitrogen has a critical point of 126.2K (- 147 °C) and 3.4 MPa (34 bar). Therefore, nitrogen (or compressed air) in a gas cylinder above this pressure is actually a supercritical fluid. These are more often known as permanent gases. At room temperature, they are well above their critical temperature, and therefore behave as a gas, similar to CO2 at 400K above. However, they cannot be liquified by pressure unless cooled below their critical temperature.

Read more about this topic:  Supercritical Fluid

Famous quotes containing the words phase and/or diagram:

    I had let preadolescence creep up on me without paying much attention—and I seriously underestimated this insidious phase of child development. You hear about it, but you’re not a true believer until it jumps out at you in the shape of your own, until recently quite companionable child.
    Susan Ferraro (20th century)

    “God’s fire upon the wane,
    A diagram hung there instead,
    More women born than men.”
    William Butler Yeats (1865–1939)