Sun - Life Cycle

Life Cycle

The Sun was formed about 4.57 billion years ago from the collapse of part of a giant molecular cloud that consisted mostly of hydrogen and helium and which probably gave birth to many other stars. This age is estimated using computer models of stellar evolution and through nucleocosmochronology. The result is consistent with the radiometric date of the oldest Solar System material, at 4.567 billion years ago. Studies of ancient meteorites reveal traces of stable daughter nuclei of short-lived isotopes, such as iron-60, that form only in exploding, short-lived stars. This indicates that one or more supernovae must have occurred near the location where the Sun formed. A shock wave from a nearby supernova would have triggered the formation of the Sun by compressing the gases within the molecular cloud, and causing certain regions to collapse under their own gravity. As one fragment of the cloud collapsed it also began to rotate due to conservation of angular momentum and heat up with the increasing pressure. Much of the mass became concentrated in the center, while the rest flattened out into a disk which would become the planets and other solar system bodies. Gravity and pressure within the core of the cloud generated a lot of heat as it accreted more gas from the surrounding disk, eventually triggering nuclear fusion. Thus, our Sun was born.

The Sun is about halfway through its main-sequence stage, during which nuclear fusion reactions in its core fuse hydrogen into helium. Each second, more than four million tonnes of matter are converted into energy within the Sun's core, producing neutrinos and solar radiation. At this rate, the Sun has so far converted around 100 Earth-masses of matter into energy. The Sun will spend a total of approximately 10 billion years as a main-sequence star.

The Sun does not have enough mass to explode as a supernova. Instead, in about 5 billion years, it will enter a red giant phase. Its outer layers will expand as the hydrogen fuel at the core is consumed and the core will contract and heat up. Hydrogen fusion will continue along a shell surrounding a helium core, which will steadily expand as more helium is produced. Once the core temperature reaches around 100 million kelvin, helium fusion at the core will begin producing carbon, and the Sun will enter the asymptotic giant branch phase. Following the red giant phase, intense thermal pulsations will cause the Sun to throw off its outer layers, forming a planetary nebula. The only object that will remain after the outer layers are ejected is the extremely hot stellar core, which will slowly cool and fade as a white dwarf over many billions of years. This stellar evolution scenario is typical of low- to medium-mass stars.

Read more about this topic:  Sun

Famous quotes containing the words life and/or cycle:

    Thou gav’st me life, but mortal; for that one
    Favour I’ll make full satisfaction:
    For my life mortal, rise from out thy hearse,
    And take a life immortal from my verse.
    Robert Herrick (1591–1674)

    The cycle of the machine is now coming to an end. Man has learned much in the hard discipline and the shrewd, unflinching grasp of practical possibilities that the machine has provided in the last three centuries: but we can no more continue to live in the world of the machine than we could live successfully on the barren surface of the moon.
    Lewis Mumford (1895–1990)