Summation of Grandi's Series

Summation Of Grandi's Series

The formal manipulations that lead to 1 − 1 + 1 − 1 + · · · being assigned a value of 1⁄2 include:

  • Adding or subtracting two series term-by-term,
  • Multiplying through by a scalar term-by-term,
  • "Shifting" the series with no change in the sum, and
  • Increasing the sum by adding a new term to the series' head.

These are all legal manipulations for sums of convergent series, but 1 − 1 + 1 − 1 + · · · is not a convergent series.

Nonetheless, there are many summation methods that respect these manipulations and that do assign a "sum" to Grandi's series. Two of the simplest methods are Cesàro summation and Abel summation.

Read more about Summation Of Grandi's Series:  Cesàro Sum, Abel Sum, Separation of Scales, Borel Sum, Spectral Asymmetry, Proof Through 1 / X Series, Methods That Fail

Famous quotes containing the words summation and/or series:

    He maintained that the case was lost or won by the time the final juror had been sworn in; his summation was set in his mind before the first witness was called. It was all in the orchestration, he claimed: in knowing how and where to pitch each and every particular argument; who to intimidate; who to trust, who to flatter and court; who to challenge; when to underplay and exactly when to let out all the stops.
    Dorothy Uhnak (b. 1933)

    History is nothing but a procession of false Absolutes, a series of temples raised to pretexts, a degradation of the mind before the Improbable.
    E.M. Cioran (b. 1911)