Sumbandila Sat - Satellite Specifications

Satellite Specifications

General satellite specifications
Item Specification
Imager NER < 0.6% with a forward motion compensation (FMC) factor of 4:1
Operational MTF: >= 5% over the full field (excluding orbit motion effects)
GSD = 6.25m @ an orbit altitude of 500 km
6 spectral band (visible range) line scanner
Matrix sensor included for "snapshot" pictures
Image quantisation: 12-bit (data for each pixel stored as 2 bytes)
Image modes Default scan mode with FMC = 4:1 but system can operate with FMC = 1:1 with consequent degradation in NER
In FMC = 4:1 mode, non-contiguous scenes of 45 km x 45 km can be imaged (max 10 scenes in 6 spectral bands before data downloading is required)
In FMC = 1:1 mode, a contiguous strip with 45 km swath can be imaged (max track length of 450 km can be imaged in 6 spectral bands before data downloading is required)
Imager data store 24 Gbyte
Image data downlink Expected frequency to be implemented on satellite exploration S-band
Link margin: 3dB @ 10° (calculated with 0dBi satellite antenna; 5W Tx power and SAC GS parameters)
Data rate sufficient to download full image data store during two night passes
No real-time downloading of images (all images stored on-board the satellite)
Viewfinder Live downlinking of PAL video images during TT&C ground station passes
PAL images selectable between B&W (narrow FOV) and two wider FOV colour PAL cameras
Satellite bore-sight steerable with "joystick" interface
Viewfinder mode can be interrupted with either image snapshot or image linescan modes upon ground command
The bore-sight direction of the viewfinder is the same as the main imager
ADCS system The satellite is 3-axis stabilised
System performance is sufficient to maintain pointing accuracy for image downloading
ADCS performance shall not degrade image quality
The satellite bore-sight can be controlled to within 3 km on the ground
The intended system implementation will use a combination of the following actuators and sensors: Horizon, fine-sun, coarse-sun sensors; star camera; magnetometer(s); fibre-optic gyros; reaction wheels and magneto torquers
A satellite slew manoeuvre from one stabilised position to another stabilised position, through an angle of 30°, can be completed in less than 1 minute
Propulsion System Sufficient propellant included to maintain a satisfactory orbit for 3–4 years
System will demonstrate orbit constellation deployment as well as orbit maintenance
TT&C Communication Link Expected frequencies to be implemented on commercial VHF uplink and UHF downlink
Link margin: 6dB @ 5° (calculated with -12dBi satellite antenna null; 5W Tx power and 12dBi GS antenna gain)
Satellite Housekeeping One TT&C GS pass per 24h will be sufficient for the purpose of monitoring telemetry and uploading of new command sets and SW
Power Energy source: solar panel with 65W (EOL) capacity
Mission planning will dictate energy requirements per orbit
Experiments Provision is made for two 1-kg experiments
SU will certify the space environmental readiness of the experiments at MC level prior to integration
Average power available per experiment: 1.2W (TBC)
Peak power available per experiment: 10W (TBC)
Orbit lifetime Design lifetime of 3 years at an orbit altitude of 500 km (subject to average sun activity)
Given the ultimate unpredictability of the space environment, the operational life can vary from the design lifetime

* Courtesy of SunSpace

Read more about this topic:  Sumbandila Sat

Famous quotes containing the word satellite:

    Books are the best things, well used; abused, among the worst. What is the right use? What is the one end, which all means go to effect? They are for nothing but to inspire. I had better never see a book, than to be warped by its attraction clean out of my own orbit, and made a satellite instead of a system.
    Ralph Waldo Emerson (1803–1882)