Sugarcane - Bagasse Applications

Bagasse Applications

Sugarcane is a major crop in many countries. It is one of the plants with the highest bioconversion efficiency. Sugarcane crop is able to efficiently fix solar energy, yielding some 55 tonnes of dry matter per hectare of land annually. After harvest, the crop produces sugar juice and bagasse, the fibrous dry matter. This dry matter is biomass with potential as fuel for energy production.

Sugarcane bagasse is a potentially abundant source of energy for large producers of sugarcane, such as Brazil, India and China. According to one report, with use of latest technologies, bagasse produced annually in Brazil has the potential of meeting 20 percent of Brazil’s energy consumption by 2020.

Electricity production

A number of countries, in particular those devoid of any fossil fuel, have implemented energy conservation and efficiency measures to minimize energy utilized in cane processing and furthermore export any excess electricity to the grid. Bagasse is usually burned to produce steam which in turn creates electricity. Current technologies, such as those in use in Mauritius, produce over 100 KWh of electricity per tonne of bagasse. With a total world harvest of over 1 billion tonnes of sugar cane per year, the global energy potential from bagasse is over 100,000 GWh. Using Mauritius as a reference, an annual potential of 10,000 GWh of additional electricity could be produced throughout Africa. Electrical generation from bagasse could become quite important, particularly to the rural populations of sugarcane producing nations.

Recent cogeneration technology plants are being designed to produce from 200 to over 300 KWh of electricity per tonne of bagasse. As sugarcane is a seasonal crop, shortly after harvest the supply of bagasse would peak, requiring power generation plants to strategically manage the storage of bagasse.

Biogas production

An greener alternative to burning bagasse for the production of electricity is to convert bagasse into biogas. Technologies are being developed to use enzymes to transform bagasse into advanced biofuel and biogas. Not only could this process realize a greater energy potential, the release of greenhouse gasses would be drastically less than simply burning bagasse.

Read more about this topic:  Sugarcane