Sucrose Gap - Applications

Applications

The sucrose-gap technique is used to record membrane activities from myelinated nerves, unmyelinated nerves, smooth muscle, and cardiac muscle. Along with microelectrode methods and patch-clamp methods, the sucrose gap is often used by experimenters to study the nervous system and can serve as an effective method to investigate the effects of drugs on membrane activities. Studies on the effects of choline, acetylcholine, and carbachol on the resting potentials of the superior cervical ganglion in rabbits were conducted using the sucrose-gap method. The recording of membrane potentials in the superior cervical ganglion was made simple with the sucrose-gap method as it allows for separated depolarizing of the ganglion and the internal carotid nerve.

The sucrose-gap technique has been applied to determine the relation between external potassium concentration and the membrane potential of smooth muscle cells using guinea-pig ureters. It has also been used to rectify inaccurate membrane potential measurements resulting from leakage currents through the membrane and extracellular resistance. Correction of an inaccurate membrane current reading is also possible through utilization of the sucrose-gap method.

Developments in the sucrose-gap method have lead to double sucrose-gap techniques. A double sucrose-gap is generally advantageous when used to electrically isolate smaller segments of nerve fibers than would be possible with a single sucrose-gap, as was done in studies on membrane potentials and currents in sheep and calf ventricular muscle fibers.The double sucrose-gap technique is also utilized over the single sucrose-gap to study cardiac muscle, where it allows for clearer resolution of early currents, those occurring within the first 10-100 milliseconds of depolarization.

Read more about this topic:  Sucrose Gap