Subfunctor - Open Subfunctors

Open Subfunctors

Subfunctors are also used in the construction of representable functors on the category of ringed spaces. Let F be a functor from the category of ringed spaces to the category of sets, and let GF. Suppose that this inclusion morphism GF is representable by open immersions, i.e., for any representable functor Hom(−, X) and any morphism Hom(−, X)→F, the fibered product G×FHom(−, X) is a representable functor Hom(−, Y) and the morphism YX defined by the Yoneda lemma is an open immersion. Then G is called an open subfunctor of F. If F is covered by representable open subfunctors, then, under certain conditions, it can be shown that F is representable. This is a useful technique for the construction of ringed spaces. It was discovered and exploited heavily by Alexandre Grothendieck, who applied it especially to the case of schemes. For a formal statement and proof, see Grothendieck, Éléments de Géométrie Algébrique, vol. 1, 2nd ed., chapter 0, section 4.5.

Read more about this topic:  Subfunctor

Famous quotes containing the word open:

    Blow the dust off the clock. Your watches are behind the times. Throw open the heavy curtains which are so dear to you—you do not even suspect that the day has already dawned outside.
    Alexander Solzhenitsyn (b. 1918)