Statement
When a vector space over a field F has a finite generating set, then one may extract from it a basis consisting of a finite number n of vectors, and the space is therefore isomorphic to Fn. The corresponding statement with the F generalized to a principal ideal domain R is no longer true, as a finitely generated module over R need not have any basis. However such a module is still isomorphic to a quotient of some module Rn with n finite (to see this it suffices to construct the morphism that sends the elements of the canonical basis Rn to the generators of the module, and take the quotient by its kernel.) By changing the choice of generating set, one can in fact describe the module as the quotient of some Rn by a particularly simple submodule, and this is the structure theorem.
The structure theorem for finitely generated modules over a principal ideal domain usually appears in the following two forms.
Read more about this topic: Structure Theorem For Finitely Generated Modules Over A Principal Ideal Domain
Famous quotes containing the word statement:
“The parent is the strongest statement that the child hears regarding what it means to be alive and real. More than what we say or do, the way we are expresses what we think it means to be alive. So the articulate parent is less a telling than a listening individual.”
—Polly Berrien Berends (20th century)
“The most distinct and beautiful statement of any truth must take at last the mathematical form.”
—Henry David Thoreau (18171862)
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)