Proofs
One proof proceeds as follows:
- Every finitely generated module over a PID is also finitely presented because a PID is Noetherian, an even stronger condition than coherence.
- Take a presentation, which is a map (relations to generators), and put it in Smith normal form.
This yields the invariant factor decomposition, and the diagonal entries of Smith normal form are the invariant factors.
Another outline of a proof:
- Denote by tM the torsion submodule of M. Then M/tM is a finitely generated torsion free module, and such a module over a commutative PID is a free module of finite rank, so it is isomorphic to for a positive integer n. This free module can be embedded as a submodule F of M, such that the embedding splits (is a right inverse of) the projection map; it suffices to lift each of the generators of F into M. As a consequence .
- For a prime p in R we can then speak of for each prime p. This is a submodule of tM, and it turns out that each Np is a direct sum of cyclic modules, and that tM is a direct sum of Np for a finite number of distinct primes p.
- Putting the previous two steps together, M is decomposed into cyclic modules of the indicated types.
Read more about this topic: Structure Theorem For Finitely Generated Modules Over A Principal Ideal Domain
Famous quotes containing the word proofs:
“I do not think that a Physician should be admitted into the College till he could bring proofs of his having cured, in his own person, at least four incurable distempers.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“Would you convey my compliments to the purist who reads your proofs and tell him or her that I write in a sort of broken-down patois which is something like the way a Swiss waiter talks, and that when I split an infinitive, God damn it, I split it so it will stay split, and when I interrupt the velvety smoothness of my more or less literate syntax with a few sudden words of bar- room vernacular, that is done with the eyes wide open and the mind relaxed but attentive.”
—Raymond Chandler (18881959)
“A mans women folk, whatever their outward show of respect for his merit and authority, always regard him secretly as an ass, and with something akin to pity. His most gaudy sayings and doings seldom deceive them; they see the actual man within, and know him for a shallow and pathetic fellow. In this fact, perhaps, lies one of the best proofs of feminine intelligence, or, as the common phrase makes it, feminine intuition.”
—H.L. (Henry Lewis)