In mathematics, the structure space of a commutative Banach algebra is an analog of the spectrum of a C*-algebra. It consists of all multiplicative linear functionals on the algebra. The Gelfand representation of the Banach algebra is a map taking the Banach algebra elements to continuous functions on the structure space.
Famous quotes containing the words structure and/or space:
“There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.”
—Donald Davidson (b. 1917)
“Though seas and land be twixt us both,
Our faith and troth,
Like separated souls,
All time and space controls:
Above the highest sphere we meet
Unseen, unknown, and greet as angels greet.”
—Richard Lovelace (16181658)