Strict-feedback Form

Strict-feedback Form

In control theory, dynamical systems are in strict-feedback form when they can be expressed as

\begin{cases} \dot{\mathbf{x}} = f_0(\mathbf{x}) + g_0(\mathbf{x}) z_1\\
\dot{z}_1 = f_1(\mathbf{x},z_1) + g_1(\mathbf{x},z_1) z_2\\
\dot{z}_2 = f_2(\mathbf{x},z_1,z_2) + g_2(\mathbf{x},z_1,z_2) z_3\\
\vdots\\
\dot{z}_i = f_i(\mathbf{x},z_1, z_2, \ldots, z_{i-1}, z_i) + g_i(\mathbf{x},z_1, z_2, \ldots, z_{i-1}, z_i) z_{i+1} \quad \text{ for } 1 \leq i < k-1\\
\vdots\\
\dot{z}_{k-1} = f_{k-1}(\mathbf{x},z_1, z_2, \ldots, z_{k-1}) + g_{k-1}(\mathbf{x},z_1, z_2, \ldots, z_{k-1}) z_k\\
\dot{z}_k = f_k(\mathbf{x},z_1, z_2, \ldots, z_{k-1}, z_k) + g_k(\mathbf{x},z_1, z_2, \dots, z_{k-1}, z_k) u\end{cases}

where

  • with ,
  • are scalars,
  • is a scalar input to the system,
  • vanish at the origin (i.e., ),
  • are nonzero over the domain of interest (i.e., for ).

Here, strict feedback refers to the fact that the nonlinear functions and in the equation only depend on states that are fed back to that subsystem. That is, the system has a kind of lower triangular form.

Read more about Strict-feedback Form:  Stabilization, See Also

Famous quotes containing the word form:

    During the long ages of class rule, which are just beginning to cease, only one form of sovereignty has been assigned to all men—that, namely, over all women. Upon these feeble and inferior companions all men were permitted to avenge the indignities they suffered from so many men to whom they were forced to submit.
    Mary Putnam Jacobi (1842–1906)