Strange Quark - History

History

In the beginnings of particle physics (first half of the 20th century), hadrons such as protons, neutron and pions were thought to be elementary particles. However, new hadrons were discovered, the 'particle zoo' grew from a few particles in the early 1930s and 1940s to several dozens of them in the 1950s. However some particles were much longer lived than others; most particles decayed through the strong interaction and had lifetimes of around 10−23 seconds. But when they decayed through the weak interactions, they had lifetimes of around 10−10 seconds to decay. While studying these decays Murray Gell-Mann (in 1953) and Kazuhiko Nishijima (in 1955) developed the concept of strangeness (which Nishijima called eta-charge, after the eta meson (η)) which explained the 'strangeness' of the longer-lived particles. The Gell-Mann–Nishijima formula is the result of these efforts to understand strange decays.

However, the relationships between each particles and the physical basis behind the strangeness property was still unclear. In 1961, Gell-Mann and Yuval Ne'eman (independently of each other) proposed a hadron classification scheme called the Eightfold Way, or in more technical terms, SU(3) flavor symmetry. This ordered hadrons into isospin multiplets. The physical basis behind both isospin and strangeness was only explained in 1964, when Gell-Mann and George Zweig (independently of each other) proposed the quark model, then consisting only of up, down, and strange quarks. Up and down quarks were the carriers of isospin, while the strange quark carried strangeness. While the quark model explained the Eightfold Way, no direct evidence of the existence of quarks was found until 1968 at the Stanford Linear Accelerator Center. Deep inelastic scattering experiments indicated that protons had substructure, and that protons made of three more-fundamental particles explained the data (thus confirming the quark model).

At first people were reluctant to identify the three-bodies as quarks, instead preferring Richard Feynman's parton description, but over time the quark theory became accepted (see November Revolution).

Read more about this topic:  Strange Quark

Famous quotes containing the word history:

    The custard is setting; meanwhile
    I not only have my own history to worry about
    But am forced to fret over insufficient details related to large
    Unfinished concepts that can never bring themselves to the point
    Of being, with or without my help, if any were forthcoming.
    John Ashbery (b. 1927)

    Perhaps universal history is the history of the diverse intonation of some metaphors.
    Jorge Luis Borges (1899–1986)

    Every generation rewrites the past. In easy times history is more or less of an ornamental art, but in times of danger we are driven to the written record by a pressing need to find answers to the riddles of today.... In times of change and danger when there is a quicksand of fear under men’s reasoning, a sense of continuity with generations gone before can stretch like a lifeline across the scary present and get us past that idiot delusion of the exceptional Now that blocks good thinking.
    John Dos Passos (1896–1970)