Strait of Gibraltar - Geology

Geology

Around 5.9 million years ago, the connection between the Mediterranean Sea and the Atlantic Ocean along the Betic and Rifan Corridor was progressively restricted until its total closure, effectively causing the salinity of the Mediterranean to periodically fall within the gypsum and salt deposition range, during what is known as the Messinian Salinity Crisis. In this water chemistry environment, dissolved mineral concentrations, temperature and stilled water currents combined properly and occurred regularly to precipitate many mineral salts in sea floor bedded layers. The resultant accumulation of various huge salt and mineral deposits about the Mediterranean basin are directly linked to this era. It is believed that this process took a short time, by geological standards, lasting between 500,000 and 600,000 years.

It is estimated that, were the straits closed even at today's higher sea level, most water in the Mediterranean basin would evaporate within only a thousand years, as it is believed to have done then, and such an event would lay down similar mineral deposits as those such as the salt mines now found under the sea floor all over the Mediterranean.

After a lengthy period of restricted intermittent or no water exchange between the Atlantic Ocean and Mediterranean basin, approximately 5.33 million years ago, the Atlantic-Mediterranean connection was completely reestablished through the Strait of Gibraltar by the Zanclean flood, and has remained open ever since. The erosion produced by the incoming waters seem to be the main cause for the present depth of the strait (900 m at the narrows, 280 m at the Camarinal Sill). The strait is expected to close again as the African Plate moves northward relative to the Eurasian Plate, but on geological rather than human timescales.

Read more about this topic:  Strait Of Gibraltar