Line and Hyper-flat Processes
Suppose we are concerned no longer with compact objects, but with objects which are spatially extended: lines on the plane or flats in 3-space. This leads to consideration of line processes, and of processes of flats or hyper-flats. There can no longer be a preferred spatial location for each object; however the theory may be mapped back into point process theory by representing each object by a point in a suitable representation space. For example, in the case of directed lines in the plane one may take the representation space to be a cylinder. A complication is that the Euclidean motion symmetries will then be expressed on the representation space in a somewhat unusual way. Moreover calculations need to take account of interesting spatial biases (for example, line segments are less likely to be hit by random lines to which they are nearly parallel) and this provides an interesting and significant connection to the hugely significant area of stereology, which in some respects can be viewed as yet another theme of stochastic geometry. It is often the case that calculations are best carried out in terms of bundles of lines hitting various test-sets, rather than by working in representation space.
Line and hyper-flat processes have their own direct applications, but also find application as one way of creating tessellations dividing space; hence for example one may speak of Poisson line tessellations. A notable recent result proves that the cell at the origin of the Poisson line tessellation is approximately circular when conditioned to be large. Tessellations in stochastic geometry can of course be produced by other means, for example by using Voronoi and variant constructions, and also by iterating various means of construction.
Read more about this topic: Stochastic Geometry
Famous quotes containing the words line and, line and/or processes:
“What we are, that only can we see. All that Adam had, all that Caesar could, you have and can do. Adam called his house, heaven and earth; Caesar called his house, Rome; you perhaps call yours, a cobblers trade; a hundred acres of ploughed land; or a scholars garret. Yet line for line and point for point, your dominion is as great as theirs, though without fine names. Build, therefore, your own world.”
—Ralph Waldo Emerson (18031882)
“I had crossed de line of which I had so long been dreaming. I was free; but dere was no one to welcome me to de land of freedom. I was a stranger in a strange land, and my home after all was down in de old cabin quarter, wid de ole folks, and my brudders and sisters. But to dis solemn resolution I came; I was free, and dey should be free also; I would make a home for dem in de North, and de Lord helping me, I would bring dem all dere.”
—Harriet Tubman (c. 18201913)
“Our bodies are shaped to bear children, and our lives are a working out of the processes of creation. All our ambitions and intelligence are beside that great elemental point.”
—Phyllis McGinley (19051978)