Third-order Stochastic Dominance
Let and be the cumulative distribution functions of two distinct investments and . dominates in the third order if and only if
- for all ,
and there is at least one strict inequality. Equivalently, dominates in the third order if and only if for all nondecreasing, concave utility functions that are positively skewed (that is, have a positive third derivative throughout).
Read more about this topic: Stochastic Dominance
Famous quotes containing the word dominance:
“Imperialism is capitalism at that stage of development at which the dominance of monopolies and finance capitalism is established; in which the export of capital has acquired pronounced importance; in which the division of the world among the international trusts has begun, in which the division of all territories of the globe among the biggest capitalist powers has been completed.”
—Vladimir Ilyich Lenin (18701924)